Saltar al contenido principal

Customer Lifetime Value (CLV) Prediction

💰 ¿Qué es CLV?

Customer Lifetime Value es la predicción del valor monetario neto que un cliente aportará a la empresa durante toda su relación comercial.

Componentes del CLV

  • Historical Value: Valor real gastado hasta la fecha
  • Predicted Value: Valor estimado futuro
  • Total CLV: Historical + Predicted
  • Time Horizon: Período de predicción (1, 3, 5 años)

🧮 Algoritmo de Cálculo

Modelo Predictivo Híbrido

def calculate_clv(customer_data):
# 1. CLV Histórico (baseline)
historical_clv = sum(customer_orders.amount)

# 2. Predicción basada en RFM
rfm_multiplier = get_rfm_multiplier(rfm_segment)

# 3. Predicción basada en tendencias
trend_factor = calculate_trend_factor(purchase_history)

# 4. Ajuste por churn probability
churn_retention = 1 - churn_probability

# 5. CLV Final
predicted_clv = historical_clv * rfm_multiplier * trend_factor * churn_retention

return {
'historical': historical_clv,
'predicted': predicted_clv,
'total': historical_clv + predicted_clv,
'confidence': calculate_confidence_score()
}

Factores de RFM para CLV

RFM SegmentCLV MultiplierRationale
Champions2.5xAlta retención y gasto
Loyal Customers2.0xComportamiento estable
Potential Loyalists1.8xCrecimiento esperado
Recent Customers1.5xPotencial por explorar
At Risk0.8xProbabilidad de churn
Lost0.2xMuy baja probabilidad de retorno

🎯 Tiers de CLV

Clasificación Automática

High Value (Tier 1)

  • CLV Total: > $10,000
  • Características: Champions o Loyal con alta frecuencia
  • Porcentaje: ~15% de la base
  • Contribución: 60-70% del revenue

Medium Value (Tier 2)

  • CLV Total: $2,000 - $10,000
  • Características: Mayoría de segmentos activos
  • Porcentaje: ~40% de la base
  • Contribución: 25-30% del revenue

Low Value (Tier 3)

  • CLV Total: < $2,000
  • Características: Nuevos clientes, At Risk, Lost
  • Porcentaje: ~45% de la base
  • Contribución: 5-15% del revenue

📊 Métricas de Ejemplo

Distribución CLV (Tenant 56)

{
"overview": {
"total_customers": 45282,
"avg_clv": 15000.50,
"total_clv": 679230000,
"distribution": {
"high": 6792, // 15%
"medium": 18113, // 40%
"low": 20377 // 45%
}
}
}

Top CLV Customers

Customer IDHistoricalPredictedTotal CLVTierRFM Segment
12345$25,000$35,000$60,000HighChampions
67890$18,000$22,000$40,000HighLoyal
11111$8,000$12,000$20,000HighChampions
22222$5,000$3,000$8,000MediumPotential Loyal

🚀 APIs de CLV

Obtener Análisis CLV

GET /api/v2/cdp/analytics/clv?tenant_id=56

Respuesta Completa

{
"success": true,
"data": {
"overview": {
"total_customers": 45282,
"avg_clv": 15000.50,
"total_clv": 679230000,
"median_clv": 8500.00,
"distribution": {
"high": 6792,
"medium": 18113,
"low": 20377
},
"last_calculation": "2024-09-16T19:20:00Z"
},
"top_customers": [
{
"customer_id": 12345,
"email": "vip@example.com",
"historical_value": 25000,
"predicted_value": 35000,
"total_clv": 60000,
"confidence_score": 0.85,
"clv_tier": "high",
"rfm_segment": "Champions",
"total_orders": 25,
"avg_order_value": 1000
}
],
"tier_breakdown": {
"high": {
"count": 6792,
"percentage": 15.0,
"avg_clv": 25000,
"total_value": 169800000,
"contribution": 60.2
},
"medium": {
"count": 18113,
"percentage": 40.0,
"avg_clv": 5500,
"total_value": 99621500,
"contribution": 35.3
},
"low": {
"count": 20377,
"percentage": 45.0,
"avg_clv": 500,
"total_value": 10188500,
"contribution": 4.5
}
}
}
}

Filtrar por Tier

GET /api/v2/cdp/analytics/clv?tenant_id=56&tier=high&limit=100

CLV Individual

GET /api/v2/cdp/customers/12345/profile?tenant_id=56

Respuesta incluye sección CLV:

{
"clv": {
"historical_value": 25000,
"predicted_value": 35000,
"total_clv": 60000,
"confidence_score": 0.85,
"clv_tier": "high",
"calculation_date": "2024-09-16T19:20:00Z",
"factors": {
"rfm_multiplier": 2.5,
"trend_factor": 1.2,
"churn_retention": 0.95
}
}
}

📈 Estrategias por Tier CLV

High Value Customers (Tier 1)

Marketing Strategy

  • Personal Account Managers: Atención 1:1
  • Exclusive Events: Early access, VIP experiences
  • Premium Support: 24/7, priority handling
  • Custom Offerings: Bespoke products, bulk discounts

Retention Focus

  • Satisfaction Surveys: Monthly check-ins
  • Loyalty Programs: Platinum tier benefits
  • Surprise & Delight: Unexpected gifts, upgrades
  • Risk Monitoring: Alert on behavioral changes

Medium Value Customers (Tier 2)

Growth Strategy

  • Upselling: Premium products, add-ons
  • Cross-selling: Related categories
  • Bundle Offers: Value packages
  • Referral Programs: Incentivized sharing

Engagement

  • Educational Content: Product guides, tips
  • Email Sequences: Nurture campaigns
  • Segmented Offers: Personalized promotions
  • Community Building: User groups, forums

Low Value Customers (Tier 3)

Optimization Strategy

  • Cost-Effective Channels: Email, social media
  • Automated Campaigns: Triggers, workflows
  • Entry-Level Products: Gateway offerings
  • Educational Content: Value demonstration

Conversion Focus

  • Onboarding: Smooth first experience
  • Quick Wins: Easy value demonstration
  • Social Proof: Reviews, testimonials
  • Gradual Upselling: Step-by-step progression

🎯 CLV-Based Campaign Examples

VIP Reactivation (High CLV + At Risk)

# Identificar High CLV customers que están At Risk
high_clv_at_risk = get_customers(
clv_tier='high',
rfm_segment='At Risk',
days_since_last_order__gt=60
)

# Campaña especial de reactivación
for customer in high_clv_at_risk:
send_vip_winback_campaign(
customer_id=customer.id,
discount_percent=30,
personal_manager=True,
exclusive_products=True
)

Cross-Sell to Medium CLV

# Medium CLV customers con potential de upgrade
medium_clv_potential = get_customers(
clv_tier='medium',
rfm_segment__in=['Potential Loyalists', 'Recent Customers'],
last_order_value__lt=avg_order_value
)

# Campaña de cross-selling inteligente
for customer in medium_clv_potential:
recommended_products = get_intelligent_recommendations(
customer_id=customer.id,
strategy='clv_upgrade'
)
send_cross_sell_campaign(customer.id, recommended_products)

📊 KPIs de CLV

Métricas de Performance

  • CLV Growth Rate: +15% anual target
  • CLV/CAC Ratio: >3:1 objetivo
  • Tier Upgrade Rate: 10% Low→Medium, 5% Medium→High
  • Prediction Accuracy: >85% confidence

Benchmarks por Industria

IndustriaAvg CLVHigh Tier %CLV/CAC
E-commerce Fashion$2,50012%4:1
SaaS B2B$15,00020%8:1
Retail Electronics$1,8008%3:1
Subscription$5,00025%12:1

Métricas de Segmento

-- CLV por RFM Segment
SELECT
rfm_segment,
COUNT(*) as customers,
AVG(total_clv) as avg_clv,
SUM(total_clv) as total_value,
AVG(confidence_score) as avg_confidence
FROM customer_clv_analysis
WHERE tenant_id = 56
GROUP BY rfm_segment
ORDER BY avg_clv DESC;

🔮 Predictive Modeling

Features del Modelo

  • Historical Metrics: RFM values, order history
  • Behavioral Patterns: Seasonality, category preferences
  • Demographic Data: Age, location, device usage
  • Engagement Metrics: Email opens, site visits
  • External Factors: Economic indicators, competitors

Model Performance

# Métricas del modelo actual
model_metrics = {
'accuracy': 0.87,
'precision': 0.85,
'recall': 0.89,
'f1_score': 0.87,
'mae': 1250.50, # Mean Absolute Error en $
'rmse': 2100.75 # Root Mean Square Error en $
}

Reentrenamiento

  • Frequency: Mensual con datos actualizados
  • Validation: A/B testing de predicciones
  • Monitoring: Drift detection automático
  • Feedback Loop: Resultados reales vs predicciones

🔄 Automatización CLV

Triggers Automáticos

# Recálculo semanal de CLV
schedule.every().sunday.at("02:00").do(recalculate_clv_all_tenants)

# Alertas de cambio de tier
if clv_tier_changed(customer_id):
notify_account_manager(customer_id, new_tier)
trigger_tier_change_campaign(customer_id)

# Campaigns automáticas basadas en CLV
if clv_tier == 'high' and churn_risk == 'high':
escalate_to_retention_team(customer_id)
send_emergency_retention_campaign(customer_id)

Integration con CRM

  • Salesforce: Sync CLV scores, tier updates
  • HubSpot: Automate lead scoring, campaign triggers
  • Intercom: Personalize support based on CLV
  • Klaviyo: Dynamic email content by CLV tier

💡 Tip: Utiliza CLV no solo para marketing, sino también para priorizar atención al cliente, desarrollo de productos y decisiones de inversión en adquisición.