Customer Lifetime Value (CLV) Prediction
💰 ¿Qué es CLV?
Customer Lifetime Value es la predicción del valor monetario neto que un cliente aportará a la empresa durante toda su relación comercial.
Componentes del CLV
- Historical Value: Valor real gastado hasta la fecha
- Predicted Value: Valor estimado futuro
- Total CLV: Historical + Predicted
- Time Horizon: Período de predicción (1, 3, 5 años)
🧮 Algoritmo de Cálculo
Modelo Predictivo Híbrido
def calculate_clv(customer_data):
# 1. CLV Histórico (baseline)
historical_clv = sum(customer_orders.amount)
# 2. Predicción basada en RFM
rfm_multiplier = get_rfm_multiplier(rfm_segment)
# 3. Predicción basada en tendencias
trend_factor = calculate_trend_factor(purchase_history)
# 4. Ajuste por churn probability
churn_retention = 1 - churn_probability
# 5. CLV Final
predicted_clv = historical_clv * rfm_multiplier * trend_factor * churn_retention
return {
'historical': historical_clv,
'predicted': predicted_clv,
'total': historical_clv + predicted_clv,
'confidence': calculate_confidence_score()
}
Factores de RFM para CLV
| RFM Segment | CLV Multiplier | Rationale |
|---|---|---|
| Champions | 2.5x | Alta retención y gasto |
| Loyal Customers | 2.0x | Comportamiento estable |
| Potential Loyalists | 1.8x | Crecimiento esperado |
| Recent Customers | 1.5x | Potencial por explorar |
| At Risk | 0.8x | Probabilidad de churn |
| Lost | 0.2x | Muy baja probabilidad de retorno |
🎯 Tiers de CLV
Clasificación Automática
High Value (Tier 1)
- CLV Total: > $10,000
- Características: Champions o Loyal con alta frecuencia
- Porcentaje: ~15% de la base
- Contribución: 60-70% del revenue
Medium Value (Tier 2)
- CLV Total: $2,000 - $10,000
- Características: Mayoría de segmentos activos
- Porcentaje: ~40% de la base
- Contribución: 25-30% del revenue
Low Value (Tier 3)
- CLV Total: < $2,000
- Características: Nuevos clientes, At Risk, Lost
- Porcentaje: ~45% de la base
- Contribución: 5-15% del revenue
📊 Métricas de Ejemplo
Distribución CLV (Tenant 56)
{
"overview": {
"total_customers": 45282,
"avg_clv": 15000.50,
"total_clv": 679230000,
"distribution": {
"high": 6792, // 15%
"medium": 18113, // 40%
"low": 20377 // 45%
}
}
}
Top CLV Customers
| Customer ID | Historical | Predicted | Total CLV | Tier | RFM Segment |
|---|---|---|---|---|---|
| 12345 | $25,000 | $35,000 | $60,000 | High | Champions |
| 67890 | $18,000 | $22,000 | $40,000 | High | Loyal |
| 11111 | $8,000 | $12,000 | $20,000 | High | Champions |
| 22222 | $5,000 | $3,000 | $8,000 | Medium | Potential Loyal |
🚀 APIs de CLV
Obtener Análisis CLV
GET /api/v2/cdp/analytics/clv?tenant_id=56
Respuesta Completa
{
"success": true,
"data": {
"overview": {
"total_customers": 45282,
"avg_clv": 15000.50,
"total_clv": 679230000,
"median_clv": 8500.00,
"distribution": {
"high": 6792,
"medium": 18113,
"low": 20377
},
"last_calculation": "2024-09-16T19:20:00Z"
},
"top_customers": [
{
"customer_id": 12345,
"email": "vip@example.com",
"historical_value": 25000,
"predicted_value": 35000,
"total_clv": 60000,
"confidence_score": 0.85,
"clv_tier": "high",
"rfm_segment": "Champions",
"total_orders": 25,
"avg_order_value": 1000
}
],
"tier_breakdown": {
"high": {
"count": 6792,
"percentage": 15.0,
"avg_clv": 25000,
"total_value": 169800000,
"contribution": 60.2
},
"medium": {
"count": 18113,
"percentage": 40.0,
"avg_clv": 5500,
"total_value": 99621500,
"contribution": 35.3
},
"low": {
"count": 20377,
"percentage": 45.0,
"avg_clv": 500,
"total_value": 10188500,
"contribution": 4.5
}
}
}
}
Filtrar por Tier
GET /api/v2/cdp/analytics/clv?tenant_id=56&tier=high&limit=100
CLV Individual
GET /api/v2/cdp/customers/12345/profile?tenant_id=56
Respuesta incluye sección CLV:
{
"clv": {
"historical_value": 25000,
"predicted_value": 35000,
"total_clv": 60000,
"confidence_score": 0.85,
"clv_tier": "high",
"calculation_date": "2024-09-16T19:20:00Z",
"factors": {
"rfm_multiplier": 2.5,
"trend_factor": 1.2,
"churn_retention": 0.95
}
}
}
📈 Estrategias por Tier CLV
High Value Customers (Tier 1)
Marketing Strategy
- Personal Account Managers: Atención 1:1
- Exclusive Events: Early access, VIP experiences
- Premium Support: 24/7, priority handling
- Custom Offerings: Bespoke products, bulk discounts
Retention Focus
- Satisfaction Surveys: Monthly check-ins
- Loyalty Programs: Platinum tier benefits
- Surprise & Delight: Unexpected gifts, upgrades
- Risk Monitoring: Alert on behavioral changes
Medium Value Customers (Tier 2)
Growth Strategy
- Upselling: Premium products, add-ons
- Cross-selling: Related categories
- Bundle Offers: Value packages
- Referral Programs: Incentivized sharing
Engagement
- Educational Content: Product guides, tips
- Email Sequences: Nurture campaigns
- Segmented Offers: Personalized promotions
- Community Building: User groups, forums
Low Value Customers (Tier 3)
Optimization Strategy
- Cost-Effective Channels: Email, social media
- Automated Campaigns: Triggers, workflows
- Entry-Level Products: Gateway offerings
- Educational Content: Value demonstration
Conversion Focus
- Onboarding: Smooth first experience
- Quick Wins: Easy value demonstration
- Social Proof: Reviews, testimonials
- Gradual Upselling: Step-by-step progression
🎯 CLV-Based Campaign Examples
VIP Reactivation (High CLV + At Risk)
# Identificar High CLV customers que están At Risk
high_clv_at_risk = get_customers(
clv_tier='high',
rfm_segment='At Risk',
days_since_last_order__gt=60
)
# Campaña especial de reactivación
for customer in high_clv_at_risk:
send_vip_winback_campaign(
customer_id=customer.id,
discount_percent=30,
personal_manager=True,
exclusive_products=True
)
Cross-Sell to Medium CLV
# Medium CLV customers con potential de upgrade
medium_clv_potential = get_customers(
clv_tier='medium',
rfm_segment__in=['Potential Loyalists', 'Recent Customers'],
last_order_value__lt=avg_order_value
)
# Campaña de cross-selling inteligente
for customer in medium_clv_potential:
recommended_products = get_intelligent_recommendations(
customer_id=customer.id,
strategy='clv_upgrade'
)
send_cross_sell_campaign(customer.id, recommended_products)
📊 KPIs de CLV
Métricas de Performance
- CLV Growth Rate: +15% anual target
- CLV/CAC Ratio: >3:1 objetivo
- Tier Upgrade Rate: 10% Low→Medium, 5% Medium→High
- Prediction Accuracy: >85% confidence
Benchmarks por Industria
| Industria | Avg CLV | High Tier % | CLV/CAC |
|---|---|---|---|
| E-commerce Fashion | $2,500 | 12% | 4:1 |
| SaaS B2B | $15,000 | 20% | 8:1 |
| Retail Electronics | $1,800 | 8% | 3:1 |
| Subscription | $5,000 | 25% | 12:1 |
Métricas de Segmento
-- CLV por RFM Segment
SELECT
rfm_segment,
COUNT(*) as customers,
AVG(total_clv) as avg_clv,
SUM(total_clv) as total_value,
AVG(confidence_score) as avg_confidence
FROM customer_clv_analysis
WHERE tenant_id = 56
GROUP BY rfm_segment
ORDER BY avg_clv DESC;
🔮 Predictive Modeling
Features del Modelo
- Historical Metrics: RFM values, order history
- Behavioral Patterns: Seasonality, category preferences
- Demographic Data: Age, location, device usage
- Engagement Metrics: Email opens, site visits
- External Factors: Economic indicators, competitors
Model Performance
# Métricas del modelo actual
model_metrics = {
'accuracy': 0.87,
'precision': 0.85,
'recall': 0.89,
'f1_score': 0.87,
'mae': 1250.50, # Mean Absolute Error en $
'rmse': 2100.75 # Root Mean Square Error en $
}
Reentrenamiento
- Frequency: Mensual con datos actualizados
- Validation: A/B testing de predicciones
- Monitoring: Drift detection automático
- Feedback Loop: Resultados reales vs predicciones
🔄 Automatización CLV
Triggers Automáticos
# Recálculo semanal de CLV
schedule.every().sunday.at("02:00").do(recalculate_clv_all_tenants)
# Alertas de cambio de tier
if clv_tier_changed(customer_id):
notify_account_manager(customer_id, new_tier)
trigger_tier_change_campaign(customer_id)
# Campaigns automáticas basadas en CLV
if clv_tier == 'high' and churn_risk == 'high':
escalate_to_retention_team(customer_id)
send_emergency_retention_campaign(customer_id)
Integration con CRM
- Salesforce: Sync CLV scores, tier updates
- HubSpot: Automate lead scoring, campaign triggers
- Intercom: Personalize support based on CLV
- Klaviyo: Dynamic email content by CLV tier
💡 Tip: Utiliza CLV no solo para marketing, sino también para priorizar atención al cliente, desarrollo de productos y decisiones de inversión en adquisición.